本文作者 漂泊
铌是一种重要的金属元素,金属铌常被用来作为合金添加剂改进钢铁的性能,也用于制造各种用在发动机上的耐高温合金。铌还可以用于核反应堆。铌的化合物也具有重要的工业用途,如铌酸锂则被用来制作压电材料。
铌的基本物理性质
分类 | 第ⅤB族▪金属 |
原子序号・原子量 | 92.906(41) |
电子配置 | 4d35s2 |
密度 | 8570kg / m 3 |
熔点 | 2468°C |
沸点 | 4742°C |
色・形状 | 灰白色金属 |
丰度 | 20ppm(地壳) |
发现者 | Charles Hatchett |
主要的同位素 | 93Nb |
用途例 | 高温合金,超导材料,压电材料 |
前后的元素 | 锆-铌-钼 |
铌的发现及其性质
1801年,英国化学家Charles Hatchett在大英博物馆考察矿石时,被一个标签为columbite(钶铁矿)的样本激起了兴趣,该矿石样是美国康涅狄格州的John Winthrop于1734年送来的。他发现从这种矿物中分离出来的化合物含有未知金属的氧化物,因此他推测该样品中含有一种新的金属。由于这种矿物是来自于哥伦布发现的美国,为了纪念它的产地,Hatchett把这种矿石命名为Columbite(钶矿),把其中的新元素命名其为Columbium(钶——铌元素的旧称)。
很多人对则对钶持怀疑态度,尤其是在接下来的一年发现了钽之后。钶和钽的性质极为相似,这些金属在大自然中一起出现,而且很难分离。1809年,英国化学家威廉·海德·沃拉斯顿(William Hyde Wollaston)对钶和钽的氧化物进行比较,得出两者的密度分别为5.918g/cm及超过8g/cm。虽然密度值相差巨大,但他仍认为两者是完全相同的物质。另一德国化学家海因里希·罗泽(Heinrich Rose)驳斥这一结论,并称原先的钽铁矿样本中还存在着另外两种元素。他以希腊神话中坦塔洛斯的女儿尼俄伯(Niobe,泪水女神)和儿子珀罗普斯(Pelops)把这两种元素分别命名为“Niobium”(铌)和“Pelopium”。钽和铌的差别细微,而因此得出的新“元素”Pelopium、Ilmenium和Dianium实际上都只是铌或者铌钽混合物。
1844年,德国化学家Heinrich Rose证明了钶铁矿包含了这两种元素,他把Columbium(钶)重新命名为Niobium(铌)。“Columbium”(钶,符号Cb)是Hatchett对新元素所给的最早命名。这一名称在美国一直有广泛的使用,而“铌”则在欧洲通用。1949年在阿姆斯特丹举办的化学联合会第15届会议最终决定以“铌”作为第41号元素的正式命名。翌年,国际纯粹与应用化学联合会(IUPAC)也采纳了这一命名,结束了一个世纪来的命名分歧。
1864年,克利斯蒂安·威廉·布隆斯特兰(Christian Wilhelm Blomstrand)、亨利·爱丁·圣克莱尔·德维尔和路易·约瑟夫·特罗斯特(Louis Joseph Troost)明确证明了钽和铌是两种不同的化学元素,并确定了一些相关化合物的化学公式。瑞士化学家让-夏尔·加利萨·德马里尼亚(Jean Charles Galissard de Marignac)在1866年进一步证实了除钽和铌以外别无其他元素。
1864年,德马里尼亚在氢气中对氯化铌进行还原反应,首次制成铌金属。虽然他在1866年已能够制备不含钽的铌金属,但要直到20世纪初,铌才开始有商业上的应用:电灯泡灯丝。铌很快就被钨淘汰了,因为钨的熔点比铌更高,更适合作灯丝材料。1920年代,人们发现铌可以加强钢材,这成为铌一直以来的主要用途。贝尔实验室的尤金·昆兹勒(Eugene Kunzler)等人发现,铌锡在强电场、磁场环境下仍能保持超导性,这使铌锡成为第一种能承受高电流和磁场的物质,可用于大功率磁铁和电动机械。这一发现促使了20年后多股长电缆的生产。这种电缆在绕成线圈后可形成大型强电磁铁,用在旋转机械、粒子加速器和粒子
探测器当中。[1-10]
铌铁矿 单质铌
重要的钢铁合金化元素
铌最重要的用途是加工制造各种铌合金以及作为钢材的添加剂。在钢的各种微合金化元素中,铌是最有效的微合金化元素,在钢中加入0.001%—0.1%的铌,就足以改变钢的力学性能。铌作为微合金化元素加入钢中并不改变铁的结构,而是与钢中的碳,氮,硫等元素结合,改变钢的显微结构。通过细晶强化和弥散强化,铌能和钢中的碳氮生成稳定的碳化物和碳氮化物。同时还能使碳化物分散并形成具有细晶化的钢。这可以极大的增强钢材的强度。例如:当加入0.1%的铌时,钢的屈服强度便能提高118MPa,实际上钢中只需加入0.03%—0.05%Nb,钢的屈服强度便可提高30%以上。而钢的成本每吨仅增1美元。普通中碳钢的屈服强度一般为250MPa,加入微量铌可使强度提高到350—800MPa 。
铌还可以通过诱导析出和控制冷却速度,实现析出物弥散分布,从而在较宽的范围内调整钢的韧性水平。因此,加入铌不仅可以提高钢的强度,还可以提高钢的韧性、抗高温氧化性和耐蚀性。此外,铌还能降低钢脆性转变温度,获得好的焊接性能和成型性能。[11]
铌钢
高温合金材料
铌具有很高的熔点,世界上很大一部份铌以纯金属态或以高纯度铌铁和铌镍合金的形态,用于生产镍、铬和铁基高温合金。这些合金可用于喷射引擎、燃气涡轮发动机、火箭组件、涡轮增压器和耐热燃烧器材。铌在高温合金的晶粒结构中会形成γ相态。这类合金一般含有最高6.5%的铌。
Inconel 718合金是其中一种含铌镍基合金,各元素含量分别为:镍50%、铬18.6%、铁18.5%、铌5%、钼3.1%、钛0.9%以及铝0.4%。可以作为高端机体材料,曾用于双子座计划。
C-103是一种铌合金,它含有89%的铌、10%的铪和1%的钛,可用于液态火箭推进器喷管,例如阿波罗登月舱的主引擎。C-103合金是1960年代初由华昌公司和波音公司共同研发的铌合金。由于冷战和太空竞赛的缘故,杜邦、美国联合碳化物、通用电气等多个美国公司都在同时研发铌基合金。铌和氧容易反应,所以生产过程需在真空或惰性气体环境下进行,这大大增加了成本和难度。真空电弧重熔(VAR)和电子束熔炼(EBM)是当时最先进的生产过程,促使了各种铌合金的发展。1959年起,研究项目在测试了“C系”中共256种铌合金后,终于制得了C-103。这些合金都可熔化成颗粒状或片状。拥有103成份比例的Nb-10Hf-1Ti合金(C-103合金)在可模锻性和高温属性之间有着最佳的平衡,因此华昌于1961年利用VAR和EBM方法生产了首批500磅C-103合金,应用于涡轮引擎部件和液态金属换热器。
阿波罗服务舱则使用的则是另一种铌合金。由于铌在400°C以上会开始氧化,所以为了防止它变得易碎,须在其表面涂上保护涂层。
由于铌的热导率好,熔点高,耐腐蚀性好,并且中子俘获截面低,所以也非常适合用于原子能反应堆。铌在原子能工业的主要用途包括:核燃料的包套材料、核燃料的合金、核反应堆中热交换器的结构材料。[12-16]
核反应堆
超导材料
超导材料是目前非常热门的研究领域。超导材料是指在特定温度下电阻会降为零的材料。通常超导材料的临界温度都是极低的温度,获得较高温度乃至室温的超导材料具有非常重要的意义。具有超导性能的金属有很多,铌是其中临界温度最高的一种。铌的一些化合物和合金也具有较高的超导转变温度,因而被广泛用于制造各种工业超导体,如超导发电机、加速器大功率磁体、超导磁储能器、核磁共振成像设备等。目前,最重要的超导体材料是铌-钛和铌-锡合金,被广泛应用于医学诊断的磁振图象仪和用于谱线(分析)的核磁共振仪。[17]
铌的其他工业用途
铌的很多化合物也有很广泛的用途。铌酸锂是一种电铁性物质,铌酸盐陶瓷可用于制作电容器,在手提电话和光调变器中以及表面声波设备的制造上有广泛的应用。铌酸锂、铌酸钾的单晶则是新型光电子学和电子学用晶体,具有良好的压电、热电和光学性质,被广泛应用到红外线、激光技术和电子工业中。此外,由于铌的熔点高,发射电子能力强,也用于制作电子管及其它电真空器件。
在化学工业中,铌是优质的耐酸和耐液态金属腐蚀的材料,可用于制作蒸煮器、加热器、冷却器等。此外,铌酸也是一种重要的催化剂。铌也被应用到铸造行业,它能形成坚硬的碳化物,因而常被用于制造汽车的汽缸盖、活塞环和刹车片等。此外,铌有时会与金和银一起用在纪念币上,币上美丽的颜色是阳极化过程形成的氧化物表层衍射所产生的。铌(或掺有1%锆)还是高压钠灯电弧管的密封材料,因为铌的热膨胀系数与经烧结的矾土弧光灯陶瓷材料非常相近。这种用于钠灯的陶瓷可以抵御化学侵蚀,也不会与灯内的高温钠液体和气体产生还原反应。铌也被用在电弧焊条上,用来焊接某些稳定化不锈钢。一些大型水箱的阴极保护系统中以铌作为阳极的材料,阳极一般再镀上一层铂。
铌也有助于增加镜片透光性能,因而也被应用到光学行业镜片的制造中。它也可应用到照明行业,如铌与1%锆的合金可用于制作高效高强钠蒸气街灯的精密支架,使这些小部件具有高的热强性、优良的成形性和耐钠蒸气腐蚀的性能。
压电陶瓷含铌的纪念币 光学镜片
参考文献
- [1]Charles Hatchett (1802) “An analysis of a mineral substance from North America, containing a metal hitherto unknown”, Philosophical Transactions of the Royal Society of London, 92 : 49–66.
- [2]Hatchett, Charles. Eigenschaften und chemisches Verhalten des von Charles Hatchett entdeckten neuen Metalls, Columbium [Properties and chemical behavior of the new metal, columbium, (that was) discovered by Charles Hatchett]. Annalen der Physik. 1802, 11 (5): 120–122. Bibcode:1802AnP….11..120H. doi:10.1002/andp.18020110507 .
- [3] Noyes, William Albert. A Textbook of Chemistry. H. Holt & Co. 1918: 523 [2014-03-12].
- [4]Percival, James. Middletown Silver and Lead Mines. Journal of Silver and Lead Mining Operations. July–December 1853, 1: 186 [2013-04-24].
- [5] Griffith, William P.; Morris, Peter J. T. Charles Hatchett FRS (1765–1847), Chemist and Discoverer of Niobium. Notes and Records of the Royal Society of London. 2003, 57 (3): 299. JSTOR 3557720. doi:10.1098/rsnr.2003.0216.
- [6] Wollaston, William Hyde. On the Identity of Columbium and Tantalum. Philosophical Transactions of the Royal Society. 1809, 99: 246–252. JSTOR 107264. doi:10.1098/rstl.1809.0017.
- [7]Rose, Heinrich. Ueber die Zusammensetzung der Tantalite und ein im Tantalite von Baiern enthaltenes neues Metall. Annalen der Physik. 1844, 139 (10): 317–341. Bibcode:1844AnP…139..317R. doi:10.1002/andp.18441391006 .
- [8]Rose, Heinrich. Ueber die Säure im Columbit von Nordamérika. Annalen der Physik. 1847, 146 (4): 572–577. Bibcode:1847AnP…146..572R. doi:10.1002/andp.18471460410 .
- [9]Kobell, V. Ueber eine eigenthümliche Säure, Diansäure, in der Gruppe der Tantal- und Niob- verbindungen. Journal für Praktische Chemie. 1860, 79 (1): 291–303. doi:10.1002/prac.18600790145.
- [10]Marignac, Blomstrand, H. Deville, L. Troost und R. Hermann. Tantalsäure, Niobsäure, (Ilmensäure) und Titansäure. Fresenius’ Journal of Analytical Chemistry. 1866, 5 (1): 384–389. doi:10.1007/BF01302537
- [11]Patel, Zh.; Khul’ka K. Niobium for Steelmaking. Metallurgist. 2001, 45 (11–12): 477–480. doi:10.1023/A:1014897029026
- [12] Donachie, Matthew J. Superalloys: A Technical Guide. ASM International. 2002: 29–30. ISBN 978-0-87170-749-9.
- [13]Bhadeshia, H. k. d. h. Nickel Based Superalloys. University of Cambridge. [2008-09-04].
- [14] Pottlacher, G.; Hosaeus, H.; Wilthan, B.; Kaschnitz, E.; Seifter, A. Thermophysikalische Eigenschaften von festem und flüssigem Inconel 718. Thermochimica Acta. 2002, 382 (1––2): 55–267. doi:10.1016/S0040-6031(01)00751-1 .
- [15] Dunn, Barrie D. Chapter 8.6 Decelerators and Heat Shield Materials. Materials and Processes: for Spacecraft and High Reliability Applications. Springer. 2015: 524. ISBN 9783319233628.
- [16] Hebda, John. Niobium alloys and high Temperature Applications. Niobium Science & Technology: Proceedings of the International Symposium Niobium 2001 (Orlando, Florida, USA) (Companhia Brasileira de Metalurgia e Mineração). 2001-05-02..
- [17]Lindenhovius, J.L.H.; Hornsveld, E.M.; Den Ouden, A.; Wessel, W.A.J.; Ten Kate, H.H.J. Powder-in-tube (PIT) Nb/sub 3/Sn conductors for high-field magnets. IEEE Transactions on Applied Superconductivity. 2000, 10: 975–978. doi:10.1109/77.828394
- [18]Volk, Tatyana; Wohlecke, Manfred. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Springer. 2008: 1–9. ISBN 978-3-540-70765-3
- [19]Grill, Robert; Gnadenberge, Alfred. Niobium as mint metal: Production–properties–processing. International Journal of Refractory Metals and Hard Materials. 2006, 24 (4): 275–282. doi:10.1016/j.ijrmhm.2005.10.008
- [20]Henderson, Stanley Thomas; Marsden, Alfred Michael; Hewitt, Harry. Lamps and Lighting. Edward Arnold Press. 1972: 244–245. ISBN 0-7131-3267-1.
- [21] Eichelbrönner, G. Refractory metals: crucial components for light sources. International Journal of Refractory Metals and Hard Materials. 1998, 16 (1): 5–11. doi:10.1016/S0263-4368(98)00009-2
- [22]Moavenzadeh, Fred. Concise Encyclopedia of Building and Construction Materials. MIT Press. 14 March 1990: 157– [18 February 2012]. ISBN 978-0-262-13248-0
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
No comments yet.