研究论文介绍

给分子做手术–C70中内包水分子

近些年,相比起研究『集合态的分子』而言,『单分子』的性质研究非常盛行。不同的分子,如果单个分子分离出来的话,研究解明其性质,扩展分子的可能性是非常基础但却意义深远的一项研究。

在众多分子中,对我们生命活动关系、影响最深的非水分子莫属,因为其氢键结合能比较强,大家公认单个水分子的处理操作以及2个水分子之间的相互作用的解析是比较困难的。但是最近,京都大学化学研究所的村田靖次郎教授研究组,成功的将1个以及2个水分子放入C70富勒烯中,通过这一研究,成功解析了在这种非常状态下单/双分子水的行为。

“Synthesis of a distinct water dimer inside fullerene C70

Zhang, R.; Murata, M.; Aharen, T.; Wakamiya, A.; Shimoaka, T.; Hasegawa T.; Murata, Y.  Nature Chem. 2016published online. DOI: 10.1038/nchem.2464

 

通过给C70做分子手术将水分子内包

村田教授当年还在小松紘一教授(京都大学名誉教授)组的时候,就已经确立了一门被称为『富勒烯分子手术』的能够开闭富勒烯的合成技术。利用这项技术,他们合成了氢分子、氦原子等一系列物质内包在富勒烯中的化合物[1],[2] 特别是在2011年他们成功合成出了内包水分子的C60富勒烯(H2O@C60),这是非常有意思的一类新型物质。这一系列研究明显能够让人感受到这一合成手法的进化,把水装到富勒烯中的研究着实令世人惊奇。[3]

这一次介绍的村田教授组的研究成果,是对C70进行分子手术,将水分子内包其中的研究。为什么用C70的原因是,C70与C60相比内部空间较大,H2O@C60分子中无法观测到『内包在C60中的1个分子水运动的样子』给这一研究留下一些未解之谜。但是C70与C60相比对称性较低,中间产物的解析非常困难等等原因,在实际研究中遭遇各种挑战,研究进行的很是艰难 。[4] 论文中也提到,村田教授自己一手确立的战略,也没能顺利地将水分子内包入C70其中。但是,通过不懈的努力,最终由分子手术过程中得到的少量的副产物分子为原料出发,成功得到目标化合物H2O@C70。一眼望去没什么太大差别的两种异构的中间体,在内包水分子的能力上竟然差了这么多,着实很有意思啊!

未命名

图片引自上述论文,略加工

 

研究的意外奖励!还能放进另外1分子水

成功的故事还在继续哦,村田教授等继H2O@C70之后,又成功发现了2个水分子内包的C70–(H2O)2@C70。C70的内部空间比C60大,使这一预想成为可能。稍后的访谈中有村田教授说的话,这是世界上首例合成水分子二聚体,而之后关于其性质的基础研究更加令人期待。还有最初未实现的目标,H2O@C70中的水分子在C70内部的无规律运动现象可通过NMR及IR等检测技术得到表征阐明。(H2O)2@C70中的2个水分子是以什么形式的氢键也会做详细的讨论。真是让人充满惊喜,忍不住去品味的一篇论文,读者们感兴趣的不妨去看看吧

最后,来听一下村田教授来讲讲这篇论文研究的前后经过,好好感受一下吧!

 

来自作者的话

5ffc4acb1789ad32cac7cc1a77868a1b

以前的研究中,我们成功在富勒烯C60的内部放入1个氢分子(Science 2005)之后又将水分子放入其中(Science 2011)。我们之后就设想,相比起C60内部空间较大的C70如果也能够放入水分子的话,是不是能够观测到水分子运动的样子,幸好博士2年生的 张锐 延续了这个课题,继续挑战探索。C70的话,最初加成反应的时候会生成两种异构体,我们就先用主产物,探索将开口扩大的方法,但是由这个化合物的后续反应,没法将开口扩大到能够放入水分子,很难实现我们最初的想法。尽管如此,张锐 在这期间发现了由C70形成含有少一个碳原子多一个硫原子的C69S结构的反应(JACS 2015)[5],可见多次的失败依然是有收获的,同时也让我们也看到了他的坚持不懈的努力。

这一次的研究,是由最初加成反应所得到的少量副产物作为原料出发,实现了当初的目标,把1个水分子“放入”C70的内部。所得的化合物的单晶X射线结构解析,同时也对内包水分子的无序运动进行观测,通过NMR结果来辅证。该合成的原料由于是副产物,收率低,原料合成的工作量可想而知,这对张锐来说真的是非常辛苦的一个课题。

这个研究,我们还收获了一个意想不到奖励!就是在最终结果中还意外检测到,2个水分“放入”C70中的化合物。就我自己而言,在看到这个实验结果之前,真是不敢想,2分子水内包其中是多么难的一件事,通过张锐不懈的反复实验,终于拿到了这一化合物的数据,证实此发现。这是首例观测到不含外部氢键的水的二聚体,获得预期之外的结果,对研究者来说是最高兴的了,好比得到额外奖金一样。

本研究发表论文期间,另外一个花费时间的地方是,对所得化合物的红外(IR)测定表征。好几个研究室帮我们以不同的手法试着测了下,最终是由同在京大化学研究所的长谷川教授的研究室完成了。长谷川研究室具有世界最前沿的高感度仪器,而且能完成氮气氛围中的测定。通过长谷川研究室成员的帮助,使得样品测定不受大气中水的影响,而且是非常少量的样品这样颇具挑战的红外谱图测定成为现实。

今后,我们将通过开发这样的技术,通过内侧的改变使富勒烯的性质发生变化作为研究目标,继续努力。另外,我们还计划将其它分子试着一个一个的放进去,从而探索并拓展小分子的结构与反应的相关基础研究。

 

村田靖次郎

 

参考文献

  1. Komatsu, K.; Murata, M.; Murata, Y. Science 2005307238. DOI: 10.1126/science.1106185
  2. Morinaka, Y.; Tanabe, F.; Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2010464532. DOI: 10.1039/C0CC00113A
  3. Kurotobi, K.; Murata, Y. Science 2011333, 613. DOI: 10.1126/science.1206376
  4. Murata, Y.; Maeda, S.; Murata, M.; Komatsu, K. J. Am. Chem. Soc. 2008130, 6702. DOI: 10.1021/ja801753m
  5. Zhang, R.; Futagoishi, T.; Murata, M.; Wakamiya, A.; Murata, Y. J. Am. Chem. Soc2014136, 8193. DOI: 10.1021/ja504054s

 

相关书籍

 

相关链接

 

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!

Related post

  1. Angew. Chem., Int. Ed. 引入叠氮的全部三个…
  2. 芳香族化合物的C-H硅基化反应:第三种手法
  3. 可见光驱动下Pd催化的C-H键自由基烷基化反应
  4. Spotlight Research–单线态分裂在有…
  5. 镍催化乙烯/丙烯酸烷基酯共聚制备高度线性、高分子量共聚物
  6. Chem. Sci. 进化后的海绵
  7. Science 克级合成潜在HIV拮抗剂bryostatin 1…
  8. Angew. Chem., Int. Ed. 分子内乙烯基碳氢键…

Comment

  1. No comments yet.

  1. No trackbacks yet.

You must be logged in to post a comment.

Pick UP!

微信

QQ

PAGE TOP