化学部落~~格格

Thiostrepton(二)Total synthesisby K. C. Nicolaou

投稿作者alberto-caeiro

Thiostrepton全合成

1)脱氢呱啶碎片38的合成

脱氢呱啶碎片38的合成是thiostrepton全合成的关键,同时也是全合成中最难的部分,全合成工作自然从它的合成开始。首先是二聚前体42的合成。L-苏氨酸衍生物43经混酸酐得到对应的酰胺,在Lawesson试剂作用下[1],得到硫酰胺44;亲核试剂44与溴化物45反应经中间体46得到羟基噻唑啉47,随后脱水得到噻唑48,此合成噻唑的方法称为Hantzschthiazole synthesis[2]。DIBAL-H将还原酯基后得到醛49。

L-半胱氨酸衍生物50经和HOSu反应得的到相应羧酸酯得到酰胺,随后同样的与Lawesson试剂反应得到硫酰胺51,之后经Hantzsch硫唑合成法得硫唑52;TFA条件下脱除对酸敏感的保护基得到氨基硫醇53;氨基硫醇53与醛49在弱碱性条件下缩合得到二聚前体42。

8Synthesis of monomeric thiazolidine derivative 42

在关键的脱氢呱啶的合成中,首先用到的是条件A,虽然得到了期望的产物39,但是是1:1的异构体,并且产率只有22%,主要的产物是桥环化合物57及其对映体57’,这在Wulff的工作中有所体现。通过对主要产物的产生机理分析,发现此串联反应的前面步骤是十分快速的,并且有很简单高效的方法得到期望的产物。在开始阶段,S原子很容易消除得到氮杂二烯41,随后立刻发生氮杂D-A反应,经过期望的endo过渡态,得到亚胺40及其对映体40’,经过异构化后,主要产物56及56‘经过氮杂Mannich反应得到57及57’,次要的40及40‘水解得到39及39’。

由上述机理可以看出,39及39‘的产率主要取决与亚胺及烯胺互变平衡,增加亚胺的比例自然可以提高39及39’的比例。于是,Nicolaou教授向其中加入卞胺,希望其高亲核性能够提高亚胺的消除。通过此方法,最终得到了60%的39及39‘,而只有痕量的57及57’,并且还有68%的醛49可以回收利用。

9Synthesis of dehydropiperidine system 39 via a biomimetic aza-D-A dimerization

在38的合成中,看似简单的胺合成反应也遇到了麻烦。39和39‘与59的反应并没有按照预期得到38及38‘,仔细分析发现,实际上得到了5元环状亚胺61和61’。虽然亚胺的亲核性不如初级胺,但是位阻效应在这起了更大的作用,于是初级胺先环化启动反应得到桥环过渡态60和60‘,随后发生环收缩,得到反应产物61和61’。

随后的实验中发现,位阻更小的亲电试剂可以正常的与大位阻的初级胺反应。于是设计酰氯64与其反应。L-甘氨酸的氨基先发生叠氮化反应[3],随后酰氯化得到64。在39和39‘与64中,以70%且无异构化产物的情况下得到期望产物65及65’。随后的反应中将乙酯置换为甲酯[4, 5],叠氮还原成氨基并用色谱柱分离两种构想,最后氨基经AllocCl保护得到38。

10Synthesis of dehydropiperidine fragment 38

2)其他碎片的合成

当归酸(Angelic acid)的sharpless不对称双羟化反应性并不好[6],改变至该条件后以90%的收率得到68(90:10dr)。邻位双羟基被缩酮化保护后,DIBAL-H还原得到初级醇69。初级醇先经过Dess-Martin氧化得到醛后,与苄基胺反应生成亚胺中间体70;随后用TMSCN终止反应,发生Strecker反应得到72,反应有良好的立体选择性主要是由5元环过渡态71中的位阻效应做到的;72发生氢解消除Boc保护基,随后在三乙胺及吡啶中与H2S发生反应,氰基转变成硫酰胺73;73发生另一分子的Hantzsch硫唑合成反应,随后N被保护得到74;74先发生酯交换得甲酯后,在TFA的作用下脱除保护基,然后羟基经TBSCl保护,得到甲酯75。

11Synthesis of thiazole fragment 75

碎片37是合成硫唑啉环不可缺少的一部分,L-苏氨酸衍生物76先经TFA脱保护,后发生叠氮化反应[3],得叠氮化物77;77发生水解反应得到羧酸78。L-苏氨酸衍生物79与甲酯80偶联形成二肽81,随后羟基保护得到82,再与Lawesson试剂反应得到硫酰胺83,脱除保护基得到初级胺84;胺84与78偶联得到85,随后脱除羟基保护得初级醇86;在DAST的协助下,86反应生成硫唑啉环,随后甲酯在锡试剂作用下得到羧酸87;羧酸7与胺75反应形成酰胺88,随后甲酯氢解得到碎片37。

12Synthesis of thiazole-thiazoline fragment 37

含硒碎片34的合成是从L-甘氨酸衍生物89开始的,首先羧基经两步得到酰胺90,脱除Boc保护后的氨基与另一分子的89反应,形成另一酰胺键得到91,随后脱除保护基得34。

分子中另一部分含硒碎片35的部分结构也需从9出发合成,89与烯丙醇反应得到烯丙醇酯92,随后脱除Boc保护基的92与93反应,得到酰胺94,脱保护基后得胺95。

13Synthesis of dipeptide fragment 34 and 95

喹哪酸碎片35的合成是由2-羧基喹啉开始的,首先酯化得到甲酯后,氢化得吡啶98;98发生一分子的Fenton反应,得到甲基酮100;甲基酮100经CBS还原得到的羟基经TBS保护得103;然后经过3步的Boekelheide串联反应得到醇108[7](50),103先与m-CPBA反应得104,随后与TFAA反应得到过渡态105,去质子得过渡态106,然后发生Boekelheide反应得到107,再于碱性条件下水解得到醇108,其中106到107中的N-O键断裂的机理还不清楚,周环、阴离子、自由基都有可能;108最后与Burgess试剂反应,经过渡态109得到烯烃110。

14Synthesis of olefin 110

烯烃110的双键在发生不对称环氧化反应时遇到了一些意外的麻烦,最终选择Katsuki环氧反应得到希望的目标产物113(82%,87:13 dr);113发生自由机型的溴代反应得到114,随后消除得到α,β-环氧烯烃115。

15Synthesis of activated epoxide 115

115与116发生SN2反应得到醇之后用TBSOTf保护羟基得到117,随后发生酯水解得到羧酸118;羧酸118与FmOH发生酯化反应得119;Pd催化的还原消除反应及与95的偶联反应使119得到120,随后另一分子的Pd催化的消除反应得到羧酸35。

16Synthesis of quinaldic acid fragment 35

3)碎片偶联及thiostrepton全合成

虽然碎片已经全部拿到,但是thiostrepton全合成的难题仍然存在。设计的碎片偶联路线、各种保护基团的选择性在全合成中都有着很大的灵活度。在最终的路线中,选择了首先合成26元环碎片36,如下图所示,脱氢呱啶碎片38产生一个一级氨基,并与硫唑啉-硫唑碎片37偶联121;121中两个甲基酯的化学环境相似,区域选择性的氢解没有意外的难以实现,12氢解后得到52%的122及其另一个氢解产物122‘,12%的二酸及28%的回收原料121;122和122’经过Staudinger还原得到对应的氨基酸123及123‘;手工搭建的模型显示期望的123比123’更加适合发生大环酰胺化,于是在发生大环酰胺化反应后得到单一的产物124,随后氢解得到6元大环碎片36。

17Synthesis of macrocycle 36

大环羧酸36与二肽片段34发生偶联反应后得到125;随后脱除Alloc保护基后与35发生另一分子的酰胺偶联得到126,随后脱除Fm保护基得到羧酸127;羧酸127经Yamaguchi环酯化反应后得到33;脱氢呱啶是良好的Michael受体,并且对许多反应条件都非常敏感。Et2NH脱除Fm保护基和Pd催化剂都是相当温和的反应条件,但对脱氢呱啶却不能适用。叔丁基过氧酸使硒醚发生消除得到脱氢甘氨酸结构,随后用HF·py脱除中间体的Si保护基和脱水得到最终的天然产物thiostrepton。

18Synthesis of advanced hydroxyl acid intermediated 127

19Total synthesis of thiostrepton (1)

 

总结

仿生的氮杂D-A反应在脱氢呱啶的合成中起着至关重要的作用,并且在thiostrepton的合成中也有重要的作用。另外,作为温和的酯氢解反应,Me3SnOH是一种非常好用的试剂[8](45)。

 

参考文献

  1. For a review on the use of Lawesson’s reagent, see: T. Ozturk, E. Ertas, O. Mert, Chem. Rev., 2007, 107, 5210. DOI: 10.1021/cr040650b;
  2. a) C. W. Holzapfel, G. R. Pettit, J. Org. Chem., 1985, 50, 2323. DOI: 10.1021/jo00213a024. b) R. C. Kelly, I. Gebhard, N. Wicnienski, J. Org. Chem., 1986, 51, 4590. DOI: 10.1021/jo00374a019;
  3. a) B Alper, S-C Hung, C-H Wong, Tetrahedron Lett, 1996, 37, 6029. doi.org/10.1016 /0040-4039(96)01307-X; b) P. T. Nyffeler, C-H Liang, K. M. Koeller, C-H Wong, J. Am. Chem. Soc., 2002, 124, 10773. DOI: 10.1021/ja0264605;
  4. For a review on transesterifications, see: J. Otera, Chem. Rev., 1993, 93, 1449. DOI: 10.1021/cr00020a004;
  5. Giannis, P. Baumhof, R. Mazitschek, Angew. Chem. Int. Ed. 2001, 40, 3672.DOI: 10.1002/1521-3773(20011001)40:19;
  6. a) K. Barry Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong, H-L. Kwong, K. Morikawa, Z-M. Wang,  J. Org. Chem., 1992, 57, 2768. DOI: 10.1021 /jo00036a003. b) For a review on asymmetric dihydroxylations, see: H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev., 1994, 94, 2483. DOI: 10.1021/cr00032a009;
  7. a) V. Boekelheide, W. J. Linn, J. Am. Chem. Soc., 1954, 76, 1286. DOI: 10.1021/ja01634a026. b) S. Oae, S. Tamagaki, T. Negoro, S. Kozuka, Tetrahedron, 1970, 26, 4051. doi.org/10.1016/S0040-4020(01)93045-5. c) C. Fontenas, E. Bejan, H. AïtHaddou, G. G. A. Balavoine, Synth, Commun. 1995, 25, 629. doi.org/10.1080/00397919508011399;
  8. a) R. L.E. Furlán, E. G. Mata, O. A. Mascaretti, Tetrahedron Lett. 1996, 37, 5229. org/ 10.1016/0040-4039(96)01071-4. b) K. C. Nicolaou, A. A. Estrada, M. Zak, S. H. Lee, B. S. Safina, Angew. Chem. Int. Ed. 2005, 44, 1378. DOI: 10.1002/anie.200462207;

 

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!

The following two tabs change content below.

Peng Li

Related post

  1. 固体NMR
  2. 合成后期多样化法 Late-Stage Diversificat…
  3. NMR管
  4. Catellani Reaction的发展与改进
  5. 申请日韩留学之我见(二)
  6. 香烟,你真的了解吗?
  7. 里宾斯基五规则(Lipinski’s “Rule of Five…
  8. 谈谈那些年深爱过的保护基

Comment

  1. No comments yet.

  1. No trackbacks yet.

You must be logged in to post a comment.

Pick UP!

微信

QQ

PAGE TOP