化学部落~~格格

依靠脂质纳米粒子的药物递送系统

译自Chem-Station网站日本版 原文链接:脂質ナノ粒子によるDDS【Merck/Avanti Polar Lipids】

翻译:炸鸡

诸如mRNA疫苗之类的核酸药物具有在生物体内稳定性低﹑细胞内移动性差等缺点。所以核酸药物都是被纳米粒子包裹着送到目标细胞中。用来预防COVID-19的mRNA疫苗就是使用的固体脂质纳米粒(Lipid Nano Particle: LNP)来完成药物递送的。本篇文章将对脂质纳米粒子的构造特征和化学性质进行介绍。

什么是脂质?

本文中的“脂质”指的是兼具极性基团(亲水性)和非极性基团(疏水性)的分子(两亲分子)。高中课本中的肥皂的成分也属于两性分子的一类。肥皂(高级脂肪酸盐1,图1)会形成胶束集合体,胶束集合体能够包裹住油脂,在水中漂浮从而达到洗去油脂的效果。

构成细胞膜的主要成分磷脂2的结构由氨基(铵盐),磷酸和脂肪链组成,磷脂2和高级脂肪酸盐1最大的区别是磷脂的极性基团是双离子型基团。磷脂构成的双层脂质膜又被成为脂质体,在医药品的递送系统(DDS)中有应用。如这样的通过双重膜结构形成的膜内外分离的结构被称为囊泡(vesicle)。脂质还可以形成其他各种各样的集合体,作用都是引起液-液相分离。(图2,BioRender.com) 

脂质纳米粒(Lipid Nano Particle: LNP)

这篇文章的主角脂质纳米粒(LNP)和脂质体一样都是以磷脂为主要成分的囊泡,其他成分有胆固醇﹑pH响应型脂质(ionizable lipid,可离子化脂质)﹑PEG脂质[1][2]1,2。作为脂质纳米粒主要成分的磷脂形成了囊泡结构,所以又被称为“辅助脂质”。胆固醇安插在脂质膜的烷基链之间起到物理上稳定双层膜的功能。PEG脂质充当辅助形成粒子时的界面活性剂,以及帮助粒子逃脱生物体内免疫系统的监测,有防止粒子被免疫系统清除的作用。pH响应型脂质(ionizable lipid,可离子化脂质)一般大多有叔胺结构,pH值低时呈电正性,pH值高时呈中性。叔胺被质子化后形成了季铵盐,季铵盐能通过和阴离子性的核酸药物(本质为磷酸离子)之间的离子性相互作用来达到稳定粒子的作用。每一种脂质对脂质纳米粒(LNP)都有非常重要的作用,通过多种脂质的协同组合,脂质纳米粒(LNP)在对抗COVID-19的mRNA疫苗中发挥了重要的作用。(图片来自参考文献2)

PEG脂质和过敏性休克

注射mRNA疫苗后曾有被注射者出现发热和过敏性休克的症状的事故。电正性的脂质粒子被PEG修饰后受到了免疫系统的攻击,引起炎症,这被认为是发热和肌肉疼痛的原因。过敏性休克发生在给药后不久,表现为荨麻疹等皮肤症状,伴随着腹痛呕吐等消化道问题,呼吸困难等呼吸道问题。这些并发症不仅仅是疫苗独有的,其他含有脂质纳米粒的药物在给药后也会发生这样的症状。COVID-19疫苗副作用的原因曾一度被认为是PEG脂质导致的,但事实证明PEG引起的过敏反应在10~20万件中只有1例。之前也鲜有PEG导致过敏的案例,但不争的是伴随着COVID-19疫苗在全球范围内接种,副作用的发病例也在增多。

市售的脂质和基础研究

伴随着疫苗受到关注,脂质纳米粒的基础·应用研究也在加速中。阳离子性脂质因为构造发生了改变,所以性质发生了大变化,副作用以及mRNA转染效率都会受到大影响。所以,对脂质纳米粒研究的风向就转移到了pH响应型脂质(ionizable lipid,可离子化脂质)。COVID-19疫苗的研发过程中,辉瑞/ BioNTech公司使用了ALC-0315 (3) 可离子化脂质,而Moderna公司使用了SM-102 (4) 离子性脂质,毫无疑问这是经过筛选了众多脂质选出的。脂质的筛选要感谢专门制造脂质的试剂公司提供了丰富的库存品种。

针对氨基部位的基础·应用研究集中在了二级胺、三级胺、四级铵盐等上,最初有希望与磷酸根阴离子发生剧烈相互作用的四级铵盐(阳离子性脂质)被广泛研究。然而,强力的阳离子性化合物是一种生物体内原本不存在的化合物,有迹象表明它可能有致毒性,因此近年来逐渐淡出LNP领域。为了在胞内体内释放mRNA,LNP需要在内体内的酸环境下迅速分解,因此pKa值约为5~7的三级胺类化合物被认为是合适的。

微流控制系统中的尺度和压力等参数会影响LNP的粒子大小,因此,LNP质量的指标为平均粒子直径和ζ电位。用于mRNA递送的LNP的粒径通常约100~200纳米。ζ电位会受LNP与核酸的比例变化的影响,因此ζ电位是指示制剂的质量的重要数据。此外,脂质的组成比例也会显著影响其特性。特别是Moderna公司的LNP的脂质组成比例通常为SM-102(50%)、GM-020(PEG-脂质:1.5%)、胆固醇(38.5%)、DSPC(10%)。

参考文献

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载.

Related post

  1. 揭开50年前的反应的秘密
  2. Spotlight Research-双硼(4)/吡啶催化的环丙…
  3. 紫阳花 美丽的毒!
  4. 实验课程特别体验!铃木ー宫浦偶联反应 “体验套装”
  5. 趣话高分子——高分子到底是何方神圣?
  6. J. Am. Chem. Soc. 通过手性路易斯酸催化剂“经由…
  7. (好书推荐)Hazardous Laboratory Chemi…
  8. Spotlight Research 叔膦催化新进展—缺电子乙烯…

Comment

  1. No comments yet.

  1. No trackbacks yet.

You must be logged in to post a comment.

Pick UP!

微信

QQ

广告专区

PAGE TOP