化学部落~~格格

Thiostrepton(一)背景介绍

投稿作者alberto-caeiro

背景介绍

硫肽类抗生素(thiopeptide antibiotics)是一类主要的天然产物,在1948年由D. L. Su在研究微球菌素时首次发现并报道[1]。主要分离自放线菌中的链霉菌,这类物质已经有30多个亚纲,80多种天然产物。大多数硫肽类抗生素都对革兰氏阳性菌(Gram-positive bacterial)的增殖有抑制作用,包括多重耐药株如耐甲氧西林金黄色葡萄球菌/methicillin-resistant Staphylococcus aureus(MRSA)。但是硫肽类抗生素因不能渗透过革兰氏阴性菌(Gram-negative bacterial)的细胞壁,对其并没有很好的活性。另外,某些特定的硫肽类抗生素还具有抗真菌、抗肿瘤、抗疟疾、免疫抑制等其他生物活性。尽管硫肽类抗生素有抑制细菌繁殖和生物毒性低等优势,但是没有任何硫肽类抗生素被发展成为药物供人类使用。主要问题是其较差的水溶性限制了它的运用。

1956年,Pagano及其同事,在百时美施贵宝医学研究所(The Squibb Institute for Medical Research),完成了从天蓝链霉菌(Streptomyces azureus)中分离出thiostrepton并且进行了试管和实体生物活性评估实验(图1)[2]。Thiostrepton在试管实验中对许多革兰氏阳性菌有很好的抑制活性,其中包括多重耐药菌,并且其最小抑菌浓度(minimum inhibitory concentration)仅为0.03-0.06μg/mL,Thiostrepton在小鼠实验中也有很好的效果。

图1:molecular structure of thiostrepton

硫肽类抗生素是一类复杂的大环状多肽,其中含有许多含N、S的杂环单元,吡啶,硫唑,噁唑和吲哚。许多硫肽的二级生物降解物也含有不寻常的氨基酸残基如:脱氢丙氨酸,D-氨基酸。正是由于这些结构复杂性,经过许多年才将这些前期发现的分子结构最终确定。Thiostrepton的分子结构确定是许多实验室的主题之一。1970年,Hodgkin组通过X结晶衍射确定了分子的组成和绝对构型[3](15),一些其他的实验室随后也提供了其他证据证明结构的正确性。

Floss及其同事通过同位素标记法研究了Thiostrepton的生物来源发现,Thiostrepton的结构是来源与氨基酸[4]。实际上,所有的硫肽家族的生物来源都是氨基酸,并且多数的杂化结构可以倒推到氨基酸前体衍生物。如图1所示:含半胱氨酸的肽链8可能先经过环化脱水得到噻唑啉9,接着的氧化反应得到噻唑10;同样地,含丝氨酸或苏氨酸的寡肽11先经过环化脱水得到噁唑啉12,接着氧化得到噁唑13。

2biosynthesis of thiazole and oxazole rings from peptidic precursors

在Floss及其同事的工作中,也发现了Thiostrepton中间脱氢呱啶环的生物源。如图3所示,中间环是aza-Diels-Alder反应的环加成产物。由丝氨酸得到的中间体14先经异构化和脱水反应得到N杂的二烯15,高活性的二烯中间体15随后发生N杂的D-A反应得到16,最后还原消除羟基得到脱氢呱啶环17。

在喹哪酸结构区域的生物源合成也是十分迷人的。如图4所示,L-tryptophan先甲基化得中间物19,随后氧化氨基得到20;20的吲哚环可能经氧化活化得到设想的亚胺21,亚胺水解后重新发生缩合脱去HX和水得到喹哪酸环结构23,NADPH还原23得到二级醇24,24随后发生区域选择性的环氧化,后开环得到喹哪酸结构区域26。

3proposed biosynthesis of the dehydropiperidine core

4proposed biosynthesis of the quinaldic acid domain

有趣的是,设想的氮杂D-A二聚反应合成Thiostrepton中间环骨架脱氢呱啶被Wulff于1986年实现[5]。在-90℃下稳定的结晶固体氮杂二烯27被设计成氨基酸合成的可能前体,在升温的条件下发生二聚得到需要的环骨架29。这种氮杂D-A反应可能经过渡态28[6]。虽然29是稳定的,但是它会异构化生成烯胺30,烯胺30可能发生水解得到胺31,在不促进水解的条件下,烯胺会发生氮杂Mannich反应得到桥环32。

5Wulff’saza-D-A dimerization and aza-Mannich reaction

逆合成分析

这个巨大的分子是由两个巨大的环状结构经脱氢呱啶环连接而成的,除了含有17个手性中心和10个环外,还含有一些敏感的官能团,如脱氢甘氨酸残基以及容易异构化的噻唑环。Nicolaou教授将Thiostrepton首先设计成为更加稳定的结构33,将其中的双键都官能团化。随后选用条件温和的成胺与成醚反应[7]将其分割成为几个碎片结构。

6Retrosynthetic analysis of thiostrepton and key bond disconnection

逆合成分析简化得到了3个片段34、35和36,随后,26元环结构36通过切断两条酰胺键被分解成两个更小的噻唑和噻唑啉片段37和脱氢呱啶38。通过以上逆合成分解,Thiostrepton被分解成四个碎片34、35、37和38,其中的三个可以通过已知的酰胺键的合成方便的得到,并且通过选择得当的保护基,它们可以在温和的条件下灵活地偶联起来。而对于碎片38,并不能通过简单的酰胺键偶联得到。受到Wulff工作的启发,氮杂D-A反应在此得到应用,二聚的单体42可以由此得到。虽然在此需要一个endo型过渡态,而Wulff的工作是exo型,但是其直接与优雅的合成路线使得Nicolaou教授仍然选择此方法。

7Retrosynthetic analysis of dehydropiperidine fragment 38

 

参考文献

  1. a) T. L. Su, J. Exp. Pathol. 1948, 29, 466. b) T. L. Su, Br. J. Exp. Pathol. 1948, 29, 473;
  2. a) J. F. Pagano, M. J. Weinstein, H. A. Stout, R. Donovick, Antibiot, Annu. 1955-1956, 554. b) J. Vandeputte, J. D. Dutcher, Antibiot, Annu. 1955-1956, 560. c) B. A. Steinberg, W. P. Jambor, L. O. Syudam, Antibiot, Annu. 1955-1956, 562;
  3. Anderson, C. Hodgkin,M. A. Viswamitra, nature, 1970, 225, 233. doi:10.1038/225233a0;
  4. a) P. Zhou, D. O’Hagan, U. Mocek, Z. Zeng, L-D. Yuen, T. Frenzel, C. J. Unkefer, J. M. Beale, H. G. Floss, Am. Chem. Soc., 1989, 111, 7274. DOI: 10.1021/ja00200a065. b) U. Mocek, Z. Zeng, D. O’Hagan, P. Zhou, L-D. G. Fan, J. M. Beale, H. G. Floss, J. Am. Chem. Soc., 1993, 115, 7992. DOI: 10.1021/ja00071a009. c) N. D. Priestley, T. M. Smith, P. R. Shipley, H. G. Floss, Bioorg. Med. Chem. 1996, 4, 1135. doi.org/10.1016/0968-0896(96)00126-5;
  5. a) G. Wulff, H. Bohnke, Chem. Int. En. 1986, 25, 90.DOI: 10.1002/anie.198600901. b) G. Wulff, H. T. Klinken, Tetrahedron, 1992, 48, 5985, doi.org/10.1016/S0040-4020(01)89847-1;
  6. For a review on hetro-Diels-Alder cycloadditions, see: L. F. Tietze, Curr. Chem. 1997, 189, 1
  7. For a review on amide bond formations, see: C. A. G. N. Montalbetti, V. Falque, Tetrahedron, 2005, 61 doi.org/10.1016/j.tet.2005.08.031.

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!

Related post

  1. 申请日韩留学之我见(二)
  2. 史一安环氧化反应(二)—反应条件和催化剂的发展
  3. Angew. Chem. Int. Ed. 少量碱即可连接醇和…
  4. 仅用唾液即可检测!? 1 atto mol以下的超高灵敏度抗体检…
  5. 来自地球馈赠的礼物——诺奖得主大村智获奖纪念演讲
  6. Angew. Chem., Int. Ed. 3次分子内共轭加成…
  7. 夏令营之我见(一)——中科院篇
  8. J. Am. Chem. Soc. Piericidin A的简…

Comment

  1. No comments yet.

  1. No trackbacks yet.

You must be logged in to post a comment.

Pick UP!

微信

QQ

PAGE TOP