化学部落~~格格

Nat. Chem., Catalytic activation of unstrained C-C Bond 2,2′-biphenols

本文作者alberto-caeiro

芝加哥大学董广彬教授开发了一种非高张力和高极性体系的C-C键活化新策略,为多取代苯酚的合成提供了新方法。

背景

过渡金属催化剂作为一种条件温和,选择性强的方法,在C-C键活化中变得更加重要。然而,现阶段的C-C键活化被局限在高张力或高度极化的体系中,非极性或者非张力的C-C键活化仍然是一大难题。

2018年,董广斌报道了一种在2,2′-biphenols(BINOL)中非张力的C(aryl)–C(aryl)键的活化。该方法的关键是利用羟基作为位点,将导向基配体磷酸酯引入体系,通过与金属Rh配位后活化C-C键,并用H2作为还原剂,得到苯酚衍生物。该方法具有低的催化剂负载量和好的官能团耐受性,并且可用于合成2,3,4-三取代苯酚。机理研究表明C-C键活化步骤是由Rh(l)-H物种催化的。

Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2′-biphenols

Zhu, Jun; Wang, Jianchun; and Dong, Guangbin*Nat. Chem.,2019, 45.DOI: s41557-018-0157-x.

工作介绍

1994年,Milstein教授开创性的发现了通过Pincer类型的底物[1],实现了芳基烷基C-C键的直接氧化加成,该过程的驱动力是形成两个金属杂5元环(图1a)。虽然联芳烃化合物在现今有极大的运用,但这类非张力化合物的直接C-C键活化面临这3个难以解决的问题。1:与常用作C-C键活化的酮类底物不同,非极性的C-C键缺少可与富电子的金属反应的缺电子中心;2:联芳烃的C-C键与过渡金属d轨道的重叠会因为联芳烃扭转的构形而变得更加困难,例如,2,2’-而取代联苯酚,扭转角接近90°[2],从而难以形成最初的σ键配位物种(图1b);3:sp2(C)-sp2(C)的键解离能(>110kJ/mol)明显大于普通的C-C键的键解离能(如:C(acyl)–C(alkyl)为82 kJ/mol)。因此,反应的关键是如何控制联芳烃的构形,并将低价态的过渡金属尽可能的接近目标C-C键。作者在2,2′-联苯酚中通过将羟基作为handle,将可循环的导向基——磷酸酯键合进体系[3],从而导向金属至预期的C-C键处,实现C-C键活化反应(图1c)。

图1:a: Milstein最初C-C键切断反应; b: 2,2’-联苯酚扭转的构形; c: 2,2’-联苯酚的C-C键活化反应.

通过一系列的条件优化,作者得到了最佳条件(详见文章SI)。随后为了弄清各个反应物的作用,作者做了一系列控制实验(表1)。当没有金属时没有反应(entry2),更换磷酸酯配体时,效果会变差或不反应(entry3&4),作者推测缺电子的磷酸酯可能会发生C-P键的氧化加成,更换金属种类时,反应不发生(entry11&12),降低催化剂当量也不反应(entry8)。

表1:条件筛选及控制实验

作者随后对底物进行了拓展,如表2。底物的4号位上有很好的普适性,各类烷基,芳基都可以很好的兼容,但当位阻偏大时,需要更多的催化剂和更高的压力;各种官能团也能兼容,氰基、酯基、酰胺基、烷基胺、烷基醚都能有中等到良好的收率,对于过渡金属催化剂有很强毒性的硫原子,反应也有中等收率;杂原子也能有效的兼容。

表2:底物范围

随后作者根据之前报道的文章,猜测可两种可行的机理(图2a)。Patha: Rh(l)-Cl直接对C-C键进行氧化加成,得到双芳基Rh(lll)物种,随后再与H2氧化加成,随后两次还原消除得到产物,因此,patha经过一个Rh(V)物种。Pathb: Rh(l)-Cl先于H2反应得到Rh(l)-H物种,它比Rh(l)-Cl更富电子,更有可能作为真实的催化剂,Rh(l)-H经过C-C键的氧化加成得到Rh(lll)物种,随后还原消除得到一个产物和芳基Rh(l)物种,随后与H2氧化加成,在还原消除得到另一分子产物和活性催化剂Rh(l)-H物种,因此,pathb只包含Rh(I) and Rh(lll)中间体。

为了区分这两种机理,作者做了机理计算(见文章SI)和控制实验。将从Ph2PCl得到的底物与[Rh(C2H4)2Cl]2反应得到含Cl桥键的复合物,而当没有H­2存在时,同样反应只能得到衡量的产物。DFT计算表明,Rh(l)-Cl对C-C键的氧化加成是可逆的,并且随后对H2的氧化加成有很高的能垒(34.2kJ/mol)。但在pathb中,Rh(l)-Cl与H2的氧化加成会产生一分子的HCl,HCl会使P-O键断裂。实际上,当催化剂当量增加时,产率会降低,而当加入碱时,产物会恢复至原有水平(图2c)。这些表明反应中HCl是有生成的,反应中的键有两种作用,一是促进Rh(l)-H物种形成,二是中和生成的HCl防止P-O键断裂。当Rh(PPh3 ) 4H作为假设的催化剂与底物3c反应时,无需H2,加热可直接得到产物。这个结果强烈的表明pathb是更可行的机理。DFT机理也表明,pathb在能量上比patha更加有利。计算表明,反应决速步为C-C键断裂,能垒为28.1kJ/mol。如果Rh(l)-H可以活化C-C键,那么芳基或烷基Rh物种也可发生此类反应。于是作者将底物与Rh(l)-Cl加合物与PhLi混合发生转金属反应,过滤掉LiCl后,加热该复合物,如预期那样,得到了C-C偶联的产物(图2d)。这些证据都表明pathb为更可行的机理。

图2:机理研究。

作者对反应的应用性也做了研究。如图3a,反应可用于2,3,4-三取代苯酚的合成。图3b,反应可进行克级放大。图3c,一锅法也可以以中等收率得到产物。图3d,反应中的磷酸酯配体可以重复使用。图4中,作者对木质素的二聚体的C-C键断裂进行了研究。

图3:Catalytic reductive cleavage of C(aryl)-C(aryl) bonds in 2,2-biphenols

图4:model study for the cleavage of C-C bonds in lignin dimers

 

参考文献

[1]: a) Gozin, M., Weisman, A., Ben-David, Y., Milstein, D. Nature 1993, 364,699. doi.org/10.1038/364699a0. b) Gozin, M. Milstein, D.Nature1994, 370, 42. doi.org/10.1038/370042a0.

[2]: Grein, F. J. Phys. Chem. A, 2002, 106, 3823.DOI: 10.1021/jp0122124.

[3]: Rousseau, G.,Breit, B. Angew. Chem. Int. Ed., 2011, 50, 2450.doi.org/10.1002/anie.201006139.

 

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!

Related post

  1. 中药成分的肠内细菌生物转化
  2. Nat. Chem. 光催化体系的C-末端选择性脱羧型bioco…
  3. (+)-Dalesconol A和B的全合成
  4. 光催化与铜催化协同催化活性酯脱羧C(sp3)-N键偶联反应
  5. 绿色又高效的流动电化学反应合成高价碘化合物
  6. J. Am. Chem. Soc. 芳香胺的Suzuki―Miy…
  7. Nat. Chem. 烷基苯制苯胺法
  8. 芳香族羧酸作为HAT催化剂的应用

Comment

  1. No comments yet.

  1. No trackbacks yet.

You must be logged in to post a comment.

Pick UP!

微信

QQ

PAGE TOP