世界著名化学家

Erik John Alexanian

本文作者 alberto-caeiro

Erik John Alexanian,美国有机化学家,现为美国北卡罗莱大学教堂山分校教授(University of North Carolina, Chapel Hill)。(封面图为课题组,右1)

 

经历

  • 2001Harvard University A.B.; Research under Professor Amir Hoveyda at Boston College.
  • 2006Princeton UniversityPh.D.,Erik J. Sorensen.
  • 2006-2008Yale University and University of Illinois Urbana-ChampaignPostdoctoral FellowJohn F. Hartwig.
  • 2008-2014University of North Carolina, Chapel Hill Assistant Professor.
  • 2014-现在 University of North Carolina, Chapel Hill AssociateProfessor.

 

获奖经历

  • Harvard College Scholarship 1998 – 2001.
  • James H. and Louise S. Hekimian Scholarship 1999 – 2001.
  • Skaggs Postdoctoral Fellowship 2002 – 2003.
  • Hugh Stott Taylor Fellowship 2003.
  • Bristol – Myers Squibb Graduate Fellowship 2004 – 2005.
  • ACS Division of Organic Chemistry Fellowship 2004 – 2005.
  • National Institutes of Health Postdoctoral Fellowship 2006 – 2008.
  • Thieme Chemistry Journal Award 2011.
  • NSF CAREER Award 2011 – 2016.

 

工作介绍

1.经烷基亲电试剂的C-C键生成反应

金属催化的C-C偶联反应是有机合成中形成C-C键的一种主要方法,但传统的偶联反应主要使用芳基或烯基卤代物/磺酸酯,对于烷基亲电试剂会发生严重的β-H消除反应。在这里,Alexanian教授开发了一类新型的经烷基卤代物的C-C键形成反应,通过与烯烃、CO等的串联反应,有效的合成一系列小分子化合物【1-3】。这里主要利用的是自由基对烯烃或CO的加成【4】,随后与引发自由基的Pd(I)结合,形成Pd(II)继续催化循环,该模式为Heck反应提供了一种新的模式。

  1. 位点选择的烷烃脂肪C-H键官能团化

脂肪C-H键的选择性直接官能团化反应在分子合成中有重要的应用潜力,但是目前有实际应用价值的此类反应还是很少。Alexanian教授开发了一种以杂原子为中心的自由基过程,实现了此类反应位点选择且可预测,产率和底物范围都是有实际应用价值的反应【5】。通过光照此类N-杂原子取代的酰胺,选择性的脂肪C-H键Br代【5d】,Cl代【5c】,黄原酸酯【5b】取代反应都可实现。此外,通过有机光催化剂吖啶的催化,还可实现选择性的脂肪C-H键的叠氮取代。此外,Alexanian教授还将此类方法用到了高分子链段的改性中【5e】

3.经异羟肟酸的烯烃双官能团化

通过异羟肟酸活泼的O-H键,Alexanian教授实现了无需金属的烯烃双官能团化反应【6】,其中即可通过亲核加成途径,也可通过自由基途径,烯烃官能团化后产物可以是双羟化、羟胺化、α-羟基酮等。

参考文献

  1. Brendon T. Sargent.; Erik J. Alexanian, J. Am. Chem. Soc.2017, 139, 12438. DOI: 10.1021/jacs.7b07983;
  2. Alexander R. O. Venning,; Megan R. Kwiatkowski.; Joan E. Roque Pena.; Brendan C. Lainhart.; Akil A. Guruparan.; Erik J. Alexanian.J. Am. Chem. Soc.2017, 139, 11595. DOI: 10.1021/jacs.7b06794;
  3. Brendon T. Sargent.; Erik J. Alexanian.J. Am. Chem. Soc.2016, 138, 7520. DOI: 10.1021/jacs.6b04610;
  4. a: Kayla S. Bloome.; Rebecca L. McMahen.; Erik J. Alexanian.J. Am. Chem. Soc.2011, 133, 20146. DOI: 10.1021/ja2091883; b: Kayla S. Bloome.; Erik J. Alexanian.J. Am. Chem. Soc. 2010, 132, 12823. DOI: 10.1021/ja1053913;
  5. a: Kaila A. Margrey.; William L. Czaplyski.; David A. Nicewicz.; Erik J. Alexanian.J. Am. Chem. Soc. 2018, 140, 4213. DOI: 10.1021/jacs.8b00592; b: William L. Czaplyski.; Christina G. Na.; Erik J. Alexanian.J. Am. Chem. Soc. 2016, 138, 13854. DOI: 10.1021/jacs.6b09414; c: Ryan Quinn.; Zef Könst.; Sharon Michalak.; Yvonne Schmidt.; Anne Szklarski.; Alex Flores.; Sangkil Nam.; David Horne.; Christopher Vanderwal.; Erik Alexanian.J. Am. Chem. Soc.2016, 138, 696. DOI: 10.1021/jacs.5b12308; d: Valerie A. Schmidt.; Ryan K. Quinn.; Andrew T. Brusoe.; Erik J. Alexanian. J. Am. Chem. Soc. 2014, 136, 14389.DOI: 10.1021/ja508469u; e: Jill B. Williamson.; William L. Czaplyski.; Erik J. Alexanian.; Frank A. Leibfarth.Angew. Chem. Int. Ed.2018, 57, 6261. doi.org/10.1002/anie.201803020;
  6. a: Valerie A. Schmidt.; Erik J. Alexanian.Angew. Chem. Int. Ed.2010, 49, 4491. doi.org/10.1002/anie.201000843; b: Valerie A. Schmidt.; Erik J. Alexanian.J. Am. Chem. Soc.2011, 133, 11402. DOI: 10.1021/ja204255e; c: Valerie A. Schmidt.; Erik J. Alexanian.Chem. Sci.2012, 3, 1672. DOI: 10.1039/C2SC01042A; d: Ryan K. Quinn.; Valerie A. Schmidt.; Erik J. Alexanian.Chem. Sci.2013, 4, 4030. DOI: 10.1039/C3SC51466H.

 

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!

Related post

  1. 约翰・F・哈特维希 John F. Hartwig
  2. Thomas Lectka
  3. 世界著名化学家——俞书宏
  4. 奥马尔・M・亚基 Omar・M・Yaghi
  5. Matthias Beller
  6. Gregory C. Fu
  7. 费尔·S·巴伦 Phil S·Baran
  8. Qi-Lin Zhou 周其林

Comment

  1. No comments yet.

  1. No trackbacks yet.

You must be logged in to post a comment.

Pick UP!

微信

QQ

PAGE TOP